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A B S T R A C T  

A group G has weak polynomial subgroup growth (wPSG) of de- 
gree ~ c~ if each finite quotient G of G contains at most I(~{ ~ subgroups. 
The main result is that wPSG of degree c, implies polynomial subgroup 
growth (PSG) of degree at most f(a) .  It follows that wPSG is equivalent 
to PSG. A corollary is that if, in a profinite group G, the k-generator 
subgroups have positive "density" 6, then G is finitely generated (the 
number of generators being bounded by a function of k and 6). 

1. I n t r o d u c t i o n  

A group G has  p o l y n o m i a l  s u b g r o u p  g r o w t h  (PSG)  of degree at  mos t  c~ if,  for 

each n, the  number  s , (G)  of subgroups  of index ~ n in G is b o u n d e d  above by 

n ~. (If G is a prof ini te  group,  "subgroup" is t aken  to  mean  "closed subgroup"  .) 

Thus  to  say  t h a t  G has  P S G  is to  say t h a t  there  a re  not  very m a n y  subgroups  

whose d i s tance  f rom G is smal l ,  where  our  measure  of  d i s tance  is the  index.  In  

the  context  of prof ini te  groups,  it  m a y  be more  na tu r a l  to  say t h a t  a subgroup  

H is close to  G if H "appears"  in a smal l  f inite quot ient  of G, in the  sense t h a t  

H > N where  N is an open norma l  subgroup  and  IG/NI is small .  This  suggests  

a var ian t  of our  or iginal  definit ion:  
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Definition: The group G has weak  P S G  (wPSG) of degree at most a if for 

every finite quotient G of G, the total number of subgroups s(G) of G satisfies 

It is obvious that PSG of degree a implies wPSG of degree at most a. At 

first sight, wPSG would seem to be a substantially weaker condition than PSG. 

However, on looking at the characterisation of finitely generated groups with 

PSG given in [LMS] (or in [DDMS], chapter 6), one sees that most of the major 

steps in the proof only use the weaker hypothesis; and it is not difficult to adjust 

the remaining steps (see the proofs of Proposition 1 and Lemma 3, below). Thus 

we have 

THEOREM A: The finitely generated residually finite groups with wPSG are 

precisely the finite extensions of finitely generated torsion-free soluble minimax 

groups. 

It follows that a finitely generated group has wPSG if and only if it has PSG. 

This conclusion depends on a substantial amount of infinite group theory; one is 

led to ask whether there is a more direct connection between wPSG and PSG. 

The answer is provided by our main result, 

THEOREM B: There is a function f such that every group (abstract or profinite) 

with wPSG of degree a has PSG of degree at most f (~) .  

In recent work, Avinoam Mann has discovered a beautiful connection between 

the subgroup growth and the distribution of finite generating sets in profinite 

groups. Theorem 2 of [M1] shows that if a profinite group G has PSG of degree 

13, then G has a generating set of size at most 13 + 3. With Theorem B this gives 

COROLLARY 1: I f  a profinite group G has wPSG of degree a then d(G) <_ 

+ 3. 

(Here, d(G) denotes the size of a minimal generating set for G as a profinite 

group.) 

In [M2], Mann considers groups G in which the k-generator subgroups have 

pos i t i ve  dens i ty :  that is, there exists ~ > 0 such that s(k)(G) >_ ~sn(G) for 

all n, where s(k)(G) denotes the number of k-generator subgroups of index at 

most n in G. In particular, Theorem 14 of [M2] states that if G is prosoluble 

and its k-generator subgroups have positive density, for some finite k, then G 
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has PSG. In the spirit of the present work, it is more natural to consider the 

density of all k-generator subgroups in finite quotients of a group G, irrespective 

of their index. Thus, writing s (k) (G) for the number of k-generator subgroups in 

a group G, let us say that  the k-generator subgroups have pos i t ive  p rof in i t e  

dens i ty  in a profinite group G if there exists 5 > 0 such that  s(k)(G) > 5s(G) 

for every finite quotient G of G. The advantage of this new definition is that  the 

connection with wPSG is immediate: since s(k)(G) < IG] k, we see that  

< 6-11r k < -,  

where a = k + log2(6-1), provided ]GI -> 2. Thus if G is profinite and, for some 

finite k, its k-generator subgroups have positive profinite density, then G has 

wPSG, and hence (by Theorem B) G has PSG. In particular, it follows that  G 

itself is finitely generated. 

In quantitative form, this argument yields a result which is significant even for 

finite groups: 

COROLLARY 2: There is a function d such that i f  G is a profinite group, k is a 

positive integer, and 0 < 6 < 1, 0 < A <_ 1 satisfy s(k)(G) >_ 5s(G) ~ for every 

finite quotient G of G, then d(G) < d(k, 6, A). 

In fact, the methods of [M2] show that  for each e C (0, 1), there exists a number 

d~(k, 6, A) such that  a random d~(k, s, A)-tuple in G generates G with probability 

at least e. 

I shall say no more about the proof of Theorem A; in any case, it follows from 

[LMS] and Theorem B. It is easy to see that  if Theorem B is true for finite groups, 

then it is true for all groups (with the same function f ) .  For the rest of the paper, 

which is devoted to the proof of Theorem B, all g roups  a re  f ini te .  

The theorem is deduced in Section 4 from four Propositions. Propositions 1 

and 2, proved in Section 2, give detailed information about the structure of a 

(fnite) group with wPSG of given degree (taking inverse limits, one can read 

off similar information about the structure of a profinite group with wPSG). In 

Section 3 we prove Proposition 3, which shows that the index [G: corea(H)] is 

polynomially bounded in terms of [G: HI, for any group G with the specified 

structure and any subgroup H of G; and Proposition 4, which gives a polynomial 

bound for the normal subgroup growth of such a group. 
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NOTATION 

Z(G), G', F(G), R(G): the centre, derived group, Fitting subgroup and soluble 

radical of G. 

E(G):  subgroup generated by the subnormal quasi-simple subgroups of G. 

soc(G): the socle of G. 

Out(G): the outer automorphism group of G. 

M(G):  the Schur multiplier of G. 

corea(H):  the biggest normal subgroup of G contained in H. 

p(G): the maximum multiplicity of any non-abelian composition factor of G. 

a(G): the product of the orders of all non-abelian composition factors of G, 

counted with their multiplicities. 

d(G): size of a minimal generating set for G. 

rk(G) = max{d(H)[ H _< G}. 

rp(G) = max{d(H)l H is a p-subgroup of G}. 

log x = log 2 x. 

The symbol f (x,  y , . . . )  denotes a function of the displayed arguments, not 

necessarily the same one each time. fi, for i = 1, 2, ..., denote fixed functions. 

2. S t r u c t u r a l  r e su l t s  

To state these, let us introduce some ad hoc notation: X'(c) will denote the class 

of all simple groups of Lie type, over fields Fp~ with e < c, and of rank parameter 

at most c. A group G i s  in Y(c) if G/R(G) is a direct product of groups in X(c). 

The first result is a variation on Proposition 1.2 of [Sh2] (I am grateful to Aner 

Shalev for sending me an early draft of [Sh2]): 

PROPOSITION 1: If a group G has wPSG of degree a, then G has a normal 

subgroup Go such that 

[G: Go[ _< fl(a), ~(Go) <_ f2(a), Go �9 Y(f3(a)). 

The other main result of this section is 

PROPOSITION 2: Let G �9 y(c). If  G has wPSG of degree 13, then there exists 

Y <_ Z(G) such that 

IN[ <_ [G: R(G)[ h(c), rk(F(G)/Y) <_ fs(c, ~). 

We shall need 
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LEMMA 1: I[  G has w P S G  o f  degree a and 

a(n) = N { N  ,~ a t IV: N] In}, 

then IG: G(n)[ <_ f (a ,n) .  

11 

Proof: We may assume that G(n) = 1. Choose K1,.. . ,Kt ,~ G with ]G: K~l[n 
for each i, so that  K1 n . . .  N Kt = 1 and t is minimal. Put  L~ -- Nj#i  Kj.  Then 

1 # [Li[[ ]G: K~][ n. Suppose n is divisible by A = A(n) distinct primes. Then 

for some prime p, we have Pl [Ld for at least [t/A] distinct values of i. Since the 

product L1L2 ."L t  is direct, it follows that G contains an elementary abelian 

p-subgroup of rank at least [t/A], hence contains at least p ([t/:q-1)2/4 distinct 

subgroups. Hence 

p (I'/~l-~)~/~ <_ s(a) <_ lap < n ~ 

so 

( [ t /A] -  1) 2 _< 4talogpn <_ 4talogn. 

It follows that t <_ f(a,  n) for some function f ,  and this gives the result since 

]at < 

Proo[ of Proposition 1: Suppose S is a non-abelian composition factor of G. 

Then G has a quotient G such that G has a normal subgroup B ~ S (~), for some 

r, and such that Co(B ) = 1. By the Classification of Finite Simple Groups, S is 

(a) sporadic, (b) alternating of degree n, for some n, or (c) a Chevalley or twisted 

Chevalley group X~(pe), for some n, e and prime p. Lemma 4.4 of [MS] shows 

that 

Icl -< r!Isl% 

By Lemmas 4.3 and 4.2 of [MS], B contains an elementary abelian subgroup H 

of order pd (for some prime p) where d >_ cner (here c is an absolute positive 

constant, and we set e = 1, n = 2 in case (a), e = 1 in case (b)); and 

Isl = IBr < pkdlog.  

where k is an absolute constant. Since H contains at least p [d/2]~ subgroups we 

have 

p [d/212 < s(G) < 
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Combined with the above estimates this gives (crudely) 

(d - 1) 2 < 4adlog(c- ld)(c  -1 + 2k). 

It follows that  d is bounded by a function of a,  and hence that  n, e and r are 

bounded above by an integer m depending only on a. In particular, in case (c) 

we have S E X(m) .  

Now if S E X ( m )  then lOut(S)[ < lSm(m + 1); see for example [C] Chapter 

3, Table 5. Let g be the 1.c.m. of the numbers 

[Aut(S)[, S sporadic or alternating of degree < m; lOut(S)[, S E A'(m). 

Then g is finite and depends only on m. Put  

q = m!g m, 

and finally put 

Go = a(q) 

in the notation of Lemma 1. The lemma shows that  ]G: Go] _< f l (a ) .  

If B / A  is a non-abelian chief factor of G, then B / A  is a product of at most 

m simple groups like S, above, and these are permuted by G. Hence they are 

normalised by Go; also if S is of type (a) or (b) then S is centralised by Go, while 

if S is of type (c) then Go induces only inner automorphisms on S. It follows 

that every non-abelian chief factor of Go is in fact simple, of type (c), hence 

in X(m), and Go acts on it by inner automorphisms. Lemma 3.5 of [Shl] now 

shows that  Go/R(Go) = $1 • . . .  x St, with Si E X ( m )  for each i. Suppose r of 

the factors S~ are isomorphic to S; if their product is B/R(G o )  then B ,~ G and 

B/R(Go)  ~ S (~), so the first part of the proof shows that  r _< m. 

Thus Go E Y(m) and #(Go) < m. We take f2(a) = f 3 ( o L )  = m to complete 

the proof. 

Proposition 2 depends on the next two lemmas. 

LEMMA 2: Let G be a group such that G /R(G )  = $1 • . "  • St, where each Si 

is a non-abelian simple group. Put  R = R(G) and E = E(G).  Then we have 

(i) E ( G / E )  = 1 and Z ( E )  = E M R <_ Z(G); 

(ii) i f  Z(G) = 1 then E C_ soc(G); 

(iii) i fOp,(R)  = 1 then Op , (R / (E  n R)) = 1 and Op,(G/E)  = 1; 
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(iv) put  Ep/Op,(R) = E(G/Op,(R)), Xp = Ep n R and Yp = Op(Xp) for each 

prime p. Then [Xp, G] <_ Ov,(R ) for each p, and the group Y = (Yp[ all p> 

satisfies Y <_ Z(G) and [Y[I 1-I~=1 IM(Si)[ �9 

Proo~ Recall ([A], w that the c o m p o n e n t s  of G are its perfect subnormal 

subgroups X such that  X / Z ( X )  is simple; E is the subgroup they generate, and 

[E, R] -- 1. 

Let X be a component. Then R X / R  = Si for some i, so if C / R  = I-[j#i Sj 

then [C, X] < R. It follows that [C, (Za),  (XG)] = 1 and hence that  [C, X] = 1 

since X is perfect (3-subgroup lemma). Clearly C X  -- G, so X ~ G. Therefore 

E = X 1 . . .  Xk (where X1, ..., Xk are the components of G) and G = ECa(E). 

This implies that  Z(E) <_ Z(G),  and it is clear that  Z(E) = E N R. 

Suppose Y / E  is a component of G/E. Put  U = Cy(E) and V = U n R. Then 

V = Y n R and Y = EU, Y n ER =- EV. I claim that U' is a component of G. 

To see this, note that  U/(E n U) -~ Y / E  is perfect; as E N U <_ Z(U) this implies 

that U' is perfect. Clearly U' is subnormal in G. Now 

u n E v  : ( u  n E ) V  : Z ( E ) V  : V, 

so U/V ~- Y / E V  ~- Y R / E R  ~- S~ for some i. Therefore U = U'V, and-so 

U'/(U' O V) -~ Si is simple. Since E << EV  ,~ Y,  we have [EV, Y] < E, and so 

[V, U] <_ E n V < Z(U). Hence U' N Y <_ Z(U'), and the claim follows. But then 

U' < E, making Y / E  abelian, a contradiction. This shows that  E(G/E)  -= 1, 

and establishes (i). 

Now suppose that  Z(G) = 1. Then E O R = 1, so if X is a component of G 

then X n R = 1, whence X ~- R X / R  = S~ for some i. Since (as we have seen) 

X ,~ G, it follows that  X _< soc(G). Thus (ii) follows. 

Suppose that  Op,(R) = 1. If E O R < Q ,~ R and Q/(E o R) is a q-group for 

some q E p', then Q is nilpotent, so the Sylow q-subgroup of Q is contained in 

Op, (R) = 1, forcing Q = EMR. As R is soluble this shows that  Op, (R/ (ENR))  = 

1. Now, since E(G/E)  = 1, the minimal normal subgroups of G/E  are abelian 

and therefore lie inside R E / E .  So if Op, (G/E) r 1 there exists a normal p'- 

subgroup M / E  ~ 1 in G/E  with M <_ RE. But then M / E  -~ ( M N R ) / ( E N R )  < 

Op,(R/(E O R ) ) =  1, a contradiction. Thus Op,(G/E) = 1, giving (iii). 

Finally, we prove (iv). Writing : G ~ G/Op, (R), we have .~p = E ( r  N R(G), 

so ~Tp <_ Z(G) and [Xp, G] < Op,(R). It follows that  [Yp, G] <_ Yp n Op,(R) = 1, 
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so Yp <_ Z(G). Since/~p = E(G) is perfect, it also follows that [)fpl[ [M(Ep/Xp)]. 
But Yp ~- Yp <_ )(p so [Yp[[ [M(Ep/Xp)[. Since Ep/Xp ~= EpR/R<~G/R, we have 

Ep/Xp ~- 1-IjeJ(v) Sj for some subset J(p) of {1, ..., t}, and so ([H] Chapter V, 

Satz 25.10) 

t 

[YP[[ IM( 1--I SJ )1 = 1-I [M(Sj)[[ 1--[ I M(S~)I" 
j e J (p )  jeJ(p) j=l 

This implies (iv) since Y = lip Yp and Yp is a p-group for each prime p. 

LEMMA 3: Let G E Y(c). IrE(G) = Ov,(G) = 1 and G has wPSG of degree/3, 

then rp(G) <_ f(/3, c). 

Proof'. This is an adaptation of [M1], Theorem 1, and [MS], Theorem 3.9. Put 

F = Op(G). Then F = F(G) and, since E(G) = 1, CG(F) < F (see [A], 31.13). 

Put  V = F /F 'F  p, d = dimF~(V). Then V is a faithful module for G/F, by [M1], 

Lemma 1.5, and it follows that IG: F I _< pat, for some t depending only on c, by 

[M1], Lemma 1.2 (an application of [BCP], Cor. 3.3). Since V contains at least 

p[ d/212 subspaces, we have 

p[d/2l ~ < s(G/F,F p) <_ pd(t+l)~, 

giving d _< 4(t + 1)/3 + 2. Hence IG: F I < p m  where m depends only on/3 and c. 

Now put F0 = F and, for i > 0, Fi+l = F[F~. Let s = max~dimF~(Fi_l/F~), 
q = 2 + [logs]. Then [DDMS], Chapter 2, Exercises 6 and 7 show that Fq is a 

powerful p-group, IF: Fql < psq and rk(F) < s(q + 1). Since Fq is powerful, we 

have dimFp(F~-l/Fi) <_ dimF~(Fq/Fq+l) for all i > q (1oc. cit., Theorem 2.9); 

hence dimFp(Fi-1/Fi) = s for some i _< q + 1. Then IG: Fil ___ p(q+l)s+m, and 

as above we infer that [s/2] 2 _< ((q + 1)s + m)/3. Since q _< 2 + logs this implies 

that s is bounded by some function of m and/3, and hence of c and/3. As 

rp(G) <_ rp(G/F) + rk(F) _< m + (q + 1)s, 

the result follows. 

Proof of Proposition 2: Now G E y(c). Let Y be the subgroup of Z(G) defined 

in Lemma 2(iv). Then ]Y[ _< YI~ [M(Si)[ where a / R ( a )  = S l  • . . .  • s t .  Now 

Si E X(c); it follows that [M(Si)I _< 16(c + 1) (see for example [C] Chapter 3, 

Table 5), and hence that [Y[ _< [G: R(G)I l*(c) where f4(c) = log 16(c + 1)/log 60. 
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Now let p be a prime. Applying Lemma 2(iii) in turn to G/Op, (R) and to 

G/Xp (in the notation of Lemma 2(iv)), we see that Op,(G/Ep) = 1. Lemma 

2(i) shows that E(G/Ep) = 1. We may therefore apply Lemma 3 to infer that 

rp(G/Ep) < f(13, c). If P = Op(R) then P n Xp -- Yp, so 

P/Yp "~ PXp/Xp "" PEp/Ep < C/Ep 

Hence rk(P/Yp) <_ f(/3, c). 

It follows that rk(F(G)/Y)  < f(/3, c), since F ( G ) / Y  TM Hp Op(n)/Yp. 

3. S o m e  p o l y n o m i a l  b o u n d s  

In this section we prove 

PROPOSITION 3: Let G 6 y(c) and let H be a subgroup of G with corec(H)  -- 1. 

Then 

IGI <_ iV: HI fT(~'''") 

where r = rk(F(G)/Z(G)) and # = it(G). 

PROPOSITION 4: Let G e y(c) and suppose that G has wPSG of degree/3. Then, 

for each n, the number of normal subgroups of index at most n in G is at most 

n/s(c'~''), where # = p(G). 

Two further lemmas are needed for Proposition 3. 

LEMMA 4: Let A be a soluble group, let n be the exponent of F(A) and r = 

rk(F(A)). Then 
IAl <_ n 4"(3+I~ 

Proof: Let p be a prime and suppose that pm exactly divides n, where m _> i. 

Let P be the Sylow p-subgroup of F(A). Then ppm = 1. By [DDMS], Theorem 

2.13, P has a powerful normal subgroup Q of index at most p~(2+log~), and 

[DDMS], Cot. 2.8 shows that  [Q[ _< pm~. Thus [P[ _< pm~(3+log~). It follows that 

IF(A)[ _< n r(3+l~ and this gives the result since IA[ _< IF(A)[ 4 (see [P], remark 

on page 204). 

LEMMA 5: Let G be a transitive subgroup of  Sym(n). If every non-abelian 

composition factor of G is in X(c), then (r(G) < n #(G)f(c). 

Proof: This is by induction on n. Let H = G1, so [G: HI = n and corec(H)  = 1. 

Choose M < G so that H is a maximal subgroup of M, and put K = coree(M).  
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Then ]M: HI = r > 1 and ]G: M] -- s, with rs = n. Inductively, we may assume 

that  a(G/K)  <_ s ~(a/K):(c). 

Now put HM = coreM(H). Then M/HM is a primitive subgroup of Sym(r) .  

Since every non-abelian composition factor of M/HM occurs as a section of some 

group in X(c), the group M/HM belongs to the class G(c0) considered in [BCP], 

where Co depends only on c. It  follows by [BCP], Theorem 1.1, that  IM/HMI < 

r S(c) where f(c) depends only on c. 

Write Ko = K :1 HM. Each composition factor of K occurs as a composition 

factor of K/Ko, since Kg ~ K for each g C G and NgeG Kg < corec (H)  = 1. 

Hence 

a(K)  <_ a (K /go )  v(g) <_ [K/Ko[ u(K) <_ r f(c)u(K) 

since IK/Ko[ <_ [M/HM[. The result follows since a(G) = a ( G / K ) a ( K ) ,  

# ( G / K )  < #(G), #(K)  < #(G) and rs = n. 

Proof of Proposition 3: Now G E 3)(c) and H < G satisfies co rea (H)  = 1. Put  

n = [G: HI and p = p(G),  and let R = R(G), F = F(G), Z = Z(G). Then 

Ia:  RI = a ( a )  _< n "S(c), 

by Lemma 5. 

Since HgNF is subnormal in F for each g E G, we have F ~ = 1. Put  A = R/Z; 

then F(A) = F/Z,  so Lemma 4 gives 

IR: Zl = IAI _< n4r(a+l~ r) 

where r = rk(F/Z).  Also Izl <_ n since Z N g <__ c o r e a ( g )  = 1. Thus la l  <__ 

n:( .... ") where f(c, r, •) = , f ( c )  + 4r(3 + logr)  + 1. 

LEMMA 6: Let G be a direct product of non-abelian simple groups. Then, for 

each n, the number of  normal subgroups of index at  most  n in G is at most 

n2+2,(a). 

Proo~ Put  # = #(G). Denote by am the number of normal subgroups of index 

exactly m in G, and by bm the number of isomorphism types of images of G of 

order m. If  F is any such image, then IAut(F)l _> m, so 

am <_ md(G)-lbm. 

Since d(S) = 2 for each non-abelian simple group S, we have d(G) <<_ 2#. 
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I t  remains  to es t imate  bin. We have G = 1-I S(~ A) where $1, $2, ... are pairwise 

non-isomorphic  s imple groups,  f i  _< # for each i, and,  pu t t ing  si = ISi], we m a y  

suppose tha t  

60 <_ s l  _< s2 <_ . . . .  

Since there  are at  most  2 non- isomorphic  simple groups of each order,  no integer 

appears  more  t han  twice in the sequence (s~). Now bm is just  the number  N(m) 
of sequences (e~) such t ha t  0 < ei _< fi  and r [  s~ ~ = m. I c la im tha t  N(m) <_ m 2. 
The  l e m m a  will follow, since we then  have 

s am < s m2tL-l.m2 < n2tt+2. 
m =  l m - ~  l 

The  claim is proved by induct ion on m. If  m < 60 then  N(m) = O. Suppose 

t ha t  m >_ 60. Then  

< <_ Z 2 <- Z r-2 < 
s~ I m si[  m r 60 

P r o o f  of  Proposition 4: Now G E Y(c) and G has w P S G  of degree /3. P u t  

# = It(G) and R = R(G). Let  n be  a posit ive integer. I f  N < G and ]G: N] < n 

then  [G: RN I < n, so there  are at  most  n 2+u• possibilities for RN, by L e m m a  6. 

Let us fix K < G ,  with R _< K and IG: K I ~ n, fix m < n, and put  

Af = {N,~G I RN = K and I K : N  I = m } .  

I t  will suffice to prove tha t  IAfl <_ n/(c,~). 

Now if N r Af then  K / N  is soluble, of derived length at  mos t  log m; so pu t t ing  

D = N A f  we have G = G/D e J;(c) a n d / (  = K/D = R(G) .  Also/7/TM = 1. 

By Propos i t ion  2, G has a central  subgroup Y, wi th  

IYI < IG: KI/'(~) < n In(c), 

such tha t  rk(F(G)/Y) < f5(c,l~). L e m m a  4, applied to the  group A = [~/Y, 
then  shows tha t  

IR: YI -< mh(~'~) <- n~(c'~), 

where h(e,~) = 4r(3 + log r )  wi th  r = fs(e,/~).  I t  follows tha t  IGI _< 

n h(c'fb+ld(c)+l. Hence 

IXI < s(~)  < tGI ~ <_ n f(c,~) 

where f(c, ~) = ~(h(c, [3) + fd(c) + 1). 
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4. P r o o f  o f  T h e o r e m  B 

We need one more simple lemma: 

LEMMA 7: Let G be a group with wPSG of degree a >_ 1, and let Go ~ G with 

] G : G o [ = m >  1. 

(i) Go has wPSG of degree at most (m + log m)a. 

(ii) I f  Go has PSG of degree % then G has PSG of degree at most ~/ + a log m. 

Proof." (i) Let K,~ Go and put K ~ -- coreG(K). Then [G/K~ < m[Go: K[ m, 
# 

so 

s (G o /g )  < s ( v / g  ~ < m"lG0/KI m" < IGo/KI (m+~~ 

since [Go/K[ >_ 2. 

(ii) [MS] Lemma 3.1 shows that G has PSG of degree at most 7 + max{a*, r}, 

where r = rk(G/Go) and G/Go has PSG of degree a*. It is easy to see that 

a* _< a log m and that  r _< log m, so we have (ii). 

Proof of Theorem B: Now let G be a group with wPSG of degree a. By Proposi- 

tion 1, G has a normal subgroup Go E y(c) ,  with c = f3(a),  [G: Go[ = m _< f l ( a )  

and #(Go) = # _< f2(a).  Lemma 7 shows that Go has wPSG of degree at most 

j3 = (m + log m)a. 

Put  q = fT(c, f5(c, j3), #). If H is a subgroup of index at most n in Go and 

H ~ = coreao(H),  then IG0: H~ < nfT(c,~,,) by Proposition 3, where r = 

rk(F(ao/H~176 and Proposition 2 shows that r <_ f5(c,~3). Thus 

[Go: H~ _< nq, and so s(Go/H ~ <_ n q~. 

By Proposition 4, Go has at most n qfs(c'~'~) normal subgroups like H ~ It 

follows that  

s,,(Go) < n ~ 

where 7 = qO 3 + fs(c, ~3, p)). Lemma 7(ii) now shows that G has PSG of degree 

at most 7 + a log m. This concludes the proof. 
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